The first-ever measurement of the expansion rate of the universe weighs on a long-running debate

[ad_1]

The first-ever measurement of the expansion rate of the universe weighs on a long-running debate in physics and astronomy

A team led by the University of Minnesota Twin Cities used a first-of-its-kind technique to measure the expansion rate of the universe, providing insights that could help determine the age of the universe more accurately and help physicists and astronomers better understand the cosmos. Credit: NASA, ESA, S. Rodney (JHU), FrontierSN Team; T. Treu (UCLA), P. Kelly (UC Berkeley), and Team GLASS; Lotus (STScI) and Frontierfields Team; M. Postman (STScI) and the CLASH Team; and Z. Levay (STScI)

With data from a supernova and image multiplier, a team led by researchers from the University of Minnesota Twin Cities has succeeded in using a first-of-its-kind technique to measure the expansion rate of the universe. Their data provides insight into a long-standing debate in the field and could help scientists determine the age of the universe more accurately and better understand the universe.

The work is divided into two papers published respectively in Sciences And Astrophysical Journal.

In astronomy, there are two exact measurements of the expansion of the universe, also called the “Hubble constant”. One is calculated from close observations of supernovae, and the second uses “Cosmic microwave backgroundOr the radiation that began to flow freely through the universe shortly after the Big Bang.

However, these two measurements differ by about 10 percent, which has caused widespread controversy among physicists and astronomers. If both measurements are accurate, it means that scientists’ current theory about the formation of the universe is incomplete.

“If new, independent measurements confirm this difference between measurements of the Hubble constant, it will become a chink in the armor of our understanding of the universe,” said Patrick Kelly, lead author of both papers and an assistant professor at the university. From the Minnesota School of Physics and Astronomy.

“The big question is whether there is a potential problem with one or both measurements. Our research addresses this by using a completely different, independent method of measuring the expansion rate of the universe.”

The University of Minnesota-led team was able to calculate this value using data from a Supernova It was discovered by Kelly in 2014 – the first-ever example of a multi-image supernova, which means the telescope took four different pictures of the same cosmic event. After the discovery, teams around the world predicted that the supernova would re-emerge in a new location in 2015, and the University of Minnesota team caught this additional image.

These multiple images appeared because the supernova was gravitationally captured by a galaxy cluster, a phenomenon in which mass bends and magnifies light. Using the time delays between the appearance of the 2014 and 2015 images, the researchers were able to measure the Hubble constant using a theory developed in 1964 by Norwegian astronomer Sjoor Refsdal that had previously been impossible to apply.

The researchers’ findings don’t completely settle the controversy, Kelly said, but they do provide more insight into the problem and move physicists closer to getting the most accurate measure of the age of the universe.

“Our measurement favors the value from the cosmic microwave background, although it does not strongly contrast with the supernova value,” Kelly said. “If observations of future supernovae imaged by gravitational cluster clusters yield a similar result, it would identify a problem with the value of the current supernova, or with our understanding of galaxy clusters.” dark matter. ”

Using the same data, the researchers found that some current models of dark matter in galaxy clusters were able to explain their observations of the supernovae. This allowed them to pinpoint the most accurate models of the locations of dark matter in the universe galaxy clustera question that has long plagued astronomers.

more information:
Patrick Kelly et al., Limitations on the Hubble Constant from Rifsdal Supernova Appearance, Sciences (2023). DOI: 10.1126/science.abh1322. www.science.org/doi/10.1126/science.abh1322

Introduction of
University of Minnesota


the quote: First-of-its-kind measurement of expansion rate of universe influences long-running debate (2023, May 11) Retrieved May 12, 2023 from https://phys.org/news/2023-05-first-of-its-kind-universe- extension-longstanding-calling.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without written permission. The content is provided for informational purposes only.



[ad_2]

Source link

Related Posts

Precaliga